Developmental differences in delayed rectifying outward current in feline ventricular myocytes.

نویسندگان

  • H Barajas-Martínez
  • A Elizalde
  • J A Sánchez-Chapula
چکیده

In the present work, we found that the delayed rectifying outward potassium current (I(K)) in adult and neonatal cat ventricular myocytes consists of both rapid and slow components, I(Kr) and I(Ks), respectively, which can be isolated pharmacologically. Thus after complete blockade of I(Kr) with dofetilide, the remaining I(Ks) current is homogeneous, as shown by an envelope of tails test. I(Kr) maximum tail current density, measured at -40 mV, was similar in adult and neonatal myocytes. I(Ks) maximum tail current density in neonatal myocytes, measured at -40 mV, was significantly smaller than in adult myocytes. Activation kinetics of I(Kr) and I(Ks) was similar in both age groups. However, the I(Kr) deactivation time course was significantly faster in neonatal than in adult myocytes. Developmental differences in the subunit composition of I(Kr) that display distinctly different deactivation kinetics are suggested.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blockade of currents by the antimalarial drug chloroquine in feline ventricular myocytes.

The effects of the antimalarial drug chloroquine on cardiac action potential and membrane currents were studied at clinically relevant concentrations. In cat Purkinje fibers, chloroquine at concentrations of 0.3 to 10 microM increased action potential duration, and reduced maximum upstroke velocity. At concentrations of 3 and 10 microM, chloroquine increased automaticity and reduced maximum dia...

متن کامل

Transient outward current carried by inwardly rectifying K+ channels in guinea pig ventricular myocytes dialyzed with low-K+ solution.

There have been periodic reports of nonclassic (4-aminopyridine insensitive) transient outward K+ current in guinea pig ventricular myocytes, with the most recent one describing a novel voltage-gated inwardly rectifying type. In the present study, we have investigated a transient outward current that overlaps inward Ca2+ current (I(Ca,L)) in myocytes dialyzed with 10 mM K+ solution and superfus...

متن کامل

Calcium-activated Cl(-) current contributes to delayed afterdepolarizations in single Purkinje and ventricular myocytes.

BACKGROUND The ionic mechanism underlying the transient inward current (I(ti)), the current responsible for delayed afterdepolarizations (DADs), appears to be different in ventricular myocytes and Purkinje fibers. In ventricular myocytes, I(ti) was ascribed to a Na(+)-Ca(2+) exchange current, whereas in Purkinje fibers, it was additionally ascribed to a Cl(-) current and a nonselective cation c...

متن کامل

The effects of barium, dofetilide and 4-aminopyridine (4-AP) on ventricular repolarization in normal and hypertrophied rabbit heart.

The density of potassium channels, including the inward rectifying current (IK1), the delayed rectifying current and the transient outward current have been reported to be decreased in cardiac hypertrophy. However, it is not known whether the effects of specific ionic channel blockers are altered in this setting. The effects of barium chloride, which inhibits IK1, of dofetilide, which inhibits ...

متن کامل

Heterogeneity of Kv2.1 mRNA expression and delayed rectifier current in single isolated myocytes from rat left ventricle.

Expression of the voltage-gated K(+) channel Kv2.1, a possible molecular correlate for the cardiac delayed rectifier current (I(K)), has recently been shown to vary between individual ventricular myocytes. The functional consequences of this cell-to-cell heterogeneity in Kv2.1 expression are not known. Using multiplex single-cell reverse transcriptase-polymerase chain reaction (RT-PCR), we dete...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 278 2  شماره 

صفحات  -

تاریخ انتشار 2000